
IEEE Radio Communications • December 2005S26 0163-6804/05/$20.00 © 2005 IEEE

Introduction
Wireless local area networks (WLANs) have become increas-
ingly more prevalent in recent years. The IEEE 802.11 stan-
dard is one of the most widely adopted standards for
broadband wireless Internet access. However, security consid-
erations with regard to wireless environments are more com-
plicated than those in wired environments. Due to the
wide-open nature of wireless radio, the network is more vul-
nerable. The original IEEE 802.11 standard [1] has defined
the following two basic security mechanisms for securing
access to IEEE 802.11 networks:
• Entity authentication, including open-system authentication

and shared-key authentication
• Wired Equivalent Privacy (WEP)

Nevertheless, they have all proven to be vulnerable.
To enhance the security in IEEE 802.11, IEEE 802.11i [2,

3] has been proposed. In addition to introducing protocols for
key management and establishment, it also defines encryption
and authentication improvements. In order to manage security
keys automatically, IEEE 802.11i has defined algorithms and
protocols for key management and establishment. As conven-
tional WEP is known to be vulnerable, IEEE 802.11i has spec-
ified enhanced encryption algorithms in order to provide
stronger privacy. IEEE 802.11i also incorporates IEEE 802.1x
[4] as its authentication enhancement. The IEEE 802.1x stan-
dard is a port-based network access control used to authenti-
cate and authorize devices interconnected by various IEEE
802 LANs. IEEE 802.11i is expected to play a critical role in
improving the overall security of current and future WLANs.

The IEEE 802.1x standard has been well defined. Current-
ly, many manufacturers of 802.11 access point (AP) also sup-
port 802.1x. The 802.1x-capable APs have been deployed in
many universities, organizations, and companies. To be
authenticated using 802.1x, end users also need to be 802.1x
capable. Unless 802.1x is embedded in the operating system
(OS), users generally will need to install 802.1x client software
in order to access to the network. Open1x
(http://www.open1x.org/), an open-source implementation of
802.1x, supports Linux. Its earlier versions also supported
BSD and Mac OS. Because many users are eager to use free
software for the 802.1x client to be able to work with current
and earlier versions of MS Windows, we therefore have devel-

oped WIRE1x to support various versions of MS Windows. As
the name suggests, WIRE1x is an open-source implementa-
tion of IEEE 802.1x client (supplicant)1 developed by the
Wireless Internet Research & Engineering (WIRE) Laborato-
ry.2 Both source code and executable code of WIRE1x can be
downloaded freely from http://wire.cs.nthu.edu.tw/wire1x/.

Essentially, 802.1x provides a framework for port-based
access control. It can work with various authentication mecha-
nisms to authenticate and authorize users. The Extensible
Authentication Protocol (EAP, IETF RFC 2284) is a protocol
commonly used in 802.1x to authenticate users. Currently,
WIRE1x provides various authentication mechanisms, includ-
ing EAP Message Digest 5 (EAP-MD5, IETF RFC 1321),
EAP Transport Layer Security (EAP-TLS, IETF RFC 2716),
EAP Tunneled TLS (EAP-TTLS) [5], and Protected Extensi-
ble Authentication Protocol (PEAP) [6]. It also supports
MSWindows XP, Windows 2000,Windows ME, and Windows
98.

Based on our experience in implementing WIRE1x, this
article presents a tutorial of 802.1x and EAP. The article is
organized to facilitate the reader’s understanding 802.1x and
EAP from a real implementation. It is expected that readers
will not only understand 802.1x and EAP, but will also be able
to examine the source code of WIRE1x.

The rest of the article is organized as follows. In the sec-
ond section, we introduce WIRE1x and describe the three of
its major components. The three components are then pre-
sented in detail in the third, fourth, and fifth sections, respec-
tively. The last section concludes the article.

WIRE1x
WIRE1x is an implementation of an IEEE 802.1x client. It is
a free as well as open-source software. WIRE1x is licensed
under the BSD License and GNU General Public License
(GPL). We believe open source is essential for any security-
related software because it can be examined as one wishes. As
mentioned above, WIRE1x provides various EAP-based
authentication mechanisms, including EAP-MD5, EAP-TLS,
EAP-TTLS, and PEAP. It can work with various versions of
MS Windows, including Windows XP, 2000, ME, and 98.
WIRE1x also works well with various types of WLAN cards.
It has been practically used in real-word applications with
FreeRADIUS (http://www.freeradius.org/) to secure WLAN
environments. The implementation of WIRE1x is based on

Abstract
This article presents the technical details of the Extensible

Authentication Protocol (EAP) and IEEE 802.1x by using
WIRE1x, an open-source implementation of IEEE 802.1x
client (supplicant) and various EAP-based authentication
mechanisms. By using a real implementation, 802.1x and EAP
should be easily understood.

JYH-CHENG CHEN AND YU-PING WANG, NATIONAL TSING HUA UNIVERSITY

Extensible Authentication Protocol (EAP)
and IEEE 802.1x: Tutorial and
Empirical Experience

1 Supplicant is a terminology defined in 802.1x and is described in the third
section of this article.

2 http://wire.cs.nthu.edu.tw/.

CHEN LAYOUT 11/17/05 11:57 AM Page 52

IEEE Radio Communications • December 2005 S27

Open1x and developed by using MS Visual C++. It also uti-
lizes open-source libraries of WinPcap (http://winpcap.polito.
it/), Libnet (http://libnet.sourceforge.net/), and OpenSSL
(http://www.openssl.org/). WinPcap and Libnet are responsible
for capturing and writing packets to and from the data link
layer. Additionally, OpenSSL is used only for TLS-based
authentication mechanisms.

WIRE1x has been used practically at the National Tsing
Hua University (NTHU). At NTHU, each department/insti-
tute is responsible for the deployment of networking facilities
inside its own building(s). The university has no authority over
the areas owned by the department/institute. The Computer
& Communication Center (CCC) operated by the university is
responsible for the networking facilities in public areas on
campus. Thus, following standards is essential for roaming
and integration of WLAN environments, even inside the same
university.

Both CCC and the Computer Science (CS) department at
NTHU have deployed WLANs by using 802.1x and RADIUS
(IETF RFC 2865) to authenticate users. To roam between
different administrative domains, both of their RADIUS
servers can be connected together, as shown in Fig. 1. We
assume a user abc who has an account abc@ccc.nthu.edu.tw
and belongs to the CCC. Once the user roams into the
WLANs covered by the CS department, the CS RADIUS
server can authenticate the user by relaying the authentication
messages back to the CCC RADIUS. The CS RADIUS server
acts as a proxy client to the CCC RADIUS server. With only
one account at CCC, the 802.1x client can still roam into
other WLANs.

The software architecture of WIRE1x can roughly be
divided into three components, as illustrated in Fig. 2:
• Supplicant Port Access Entity (PAE) state machine
• EAP and authentication mechanisms
• WinPcap, Libnet, and OpenSSL
The supplicant PAE state machine follows the specifications
defined in IEEE 802.1x. The third section describes 802.1x

and the supplicant PAE state machine. As the name suggests,
the EAP and authentication mechanisms support EAP and var-
ious authentication mechanisms. The forth section presents
and compares the EAP-based authentication mechanisms.
The fifth section describes the open-source libraries, including
WinPcap, Libnet, and OpenSSL, used in WIRE1x.

802.1x
IEEE 802.1x defines a mechanism for port-based network
access control. It is based upon EAP to provide compatible
authentication and authorization mechanisms for devices
interconnected by IEEE 802 LANs. As depicted in Fig. 3,
there are three main components in the IEEE 802.1x authen-
tication system: supplicant, authenticator, and authentication
server. In a WLAN, the supplicant is usually a mobile node
(MN). The AP usually represents an authenticator. An authen-
tication, authorization, and accounting (AAA) server such as

FIGURE 1. Authentication on a visited network.

MN

802.1X AP 802.1X AP

abc@ccc.nthu.edu.tw

Visited realm
Home realm

NTHU_CS
RADIUS server NTHU_CCC

RADIUS server

Server-server
communication

FIGURE 2. Software architecture of WIRE1x.

AP1

AP2

WIRE1x

EAP and authentication
mechanisms

WinPcap,
Libnet, and

OpenSSL

802.11
wireless

card

Supplicant
PAE state
machine

CHEN LAYOUT 11/17/05 11:57 AM Page 53

IEEE Radio Communications • December 2005S28

the RADIUS server is the authentication server. The port in
802.1x represents the association between the supplicant and
the authenticator. Both supplicant and authenticator have a
PAE that operates the algorithms and protocols associated
with the authentication mechanisms. In Fig. 3, the authentica-
tor’s controlled port is in unauthorized state, that is, the port is
open. Messages will be directed only to the authenticator PAE,
which will further direct 802.1x messages to the authentication
server. The authenticator PAE will close the controlled port
after the supplicant is authenticated successfully. Thus, the
supplicant is able to access to other services through the con-
trolled port.

Based upon EAP, the IEEE 802.1x standard can use a
number of authentication mechanisms. The authentication
mechanisms are outside the scope of the IEEE 802.1x stan-
dard. Many authentication mechanisms such as MD5, TLS,
TTLS, and PEAP can be used. The IEEE 802.1x also defines
EAP over LANs (EAPOL) in order to encapsulate EAP mes-
sages between the supplicant and the authenticator. The
authenticator PAE relays all EAP messages between the sup-
plicant and the authentication server. The 802.1x is utilized to
enforce the use of specific authentication mechanism and to
route authentication messages properly, while the authentica-
tion mechanisms define the actual authentication exchanges
that take place. Fig. 4 shows a typical 802.1x message
exchange. In Fig. 4, RADIUS serves as the authentication
server. This does not limit the use of other AAA servers such
as Diameter (IETF RFC 3588) as the authentication server. A
detailed discussion of the PAE state diagrams and state tran-
sitions in supplicant and authenticator can be found in [3].

The supplicant PAE state machine is the major component
of any implementation of the 802.1x supplicant. It specifies
the behavior of the supplicant and interacts with the authenti-
cator. In WIRE1x, roughly speaking, the supplicant PAE state
machine is implemented in four files: dot1x_globals.cpp,
eap.cpp, eapol.cpp, and os_generic.cpp. All variables of the

state machine are defined in dot1x_globals.h. Additionally, the
EAP code field and type field specified in IETF RFC 2284 are
defined in eap.h. The eap.cpp is responsible for building the
response frames and decoding the EAP packets. Moreover,
the EAPOL header and the Ethernet header are defined in
eapol.h. The eapol.cpp is responsible for starting the EAPOL
process, performing necessary PAE state actions, transiting to
proper states, decoding the EAPOL packets, and transmitting
EAPOL frames. Furthermore, os_frame_funcs.h comprises
get_frame(), send_frame(), more_frames(), and so on. In
os_generic.cpp, get_frame() employs pcap_dispatch() to cap-
ture EAP frames. The send_frame() employs
libnet_write_link() to send EAP frames.

EAP and Authentication Mechanisms
This section introduces EAP. In addition, we also use the
message exchanges depicted in Fig. 4 to demonstrate a typical
authentication procedure of WIRE1x. Additionally, we pro-
vide a description and comparison of several authentication
mechanisms implemented in WIRE1x.

Overview of EAP
EAP was originally proposed for the Point-to-Point Protocol
(PPP, IETF RFC 1661) for an optional authentication phase
after the PPP link has been established. It is also a general-
purpose authentication protocol. EAP supports multiple
authentication methods, such as token card, Kerberos (IETF
RFC 1510), one-time password, certificate, public key authen-
tication, and smart card. Figure 5 shows that there can be
many different authentication mechanisms in the Authentica-
tion Layer. The authentication mechanisms are based upon
EAP. Any new authentication mechanisms can be added easi-
ly. WIRE1x is expected to be versatile in authentication mech-
anisms. It has been implemented to support the most common
authentication methods, including EAP-MD5, EAP-TLS,
EAP-TTLS, and PEAP.

When using EAP, it is not necessary to prenegotiate a par-
ticular authentication mechanism at the Link Control Phase.
Instead, the authenticator usually sends an initial Identity
Request followed by one or more Requests to authenticate the

FIGURE 3. Supplicant, authenticator, and authentication server.

Supplicant
PAE

Supplicant

LAN
(802.3, 802.11, etc.)

Authenticator
Authenticator

PAE

EAP protocol exchanges
carried in higher-layer
protocol

Uncontrolled
port

Port
unauthorized

Controlled
port

Authentication
server

Services offered
by

authenticator’s system

FIGURE 4. A typical 802.1x message flow.

EAPOL-start

RADIUS-access-request

RADIUS-access-challenge

RADIUS-access-request

RADIUS-access-accept Authentication
success

Authentication
failure

RADIUS-access-reject

EAP-Request/identity

EAP-Response/identity

EAP-Request/auth

EAP-Response/auth

EAP-success

EAP-failure

EAPOL
(EAP)

RADIUS
(EAP)

Supplicant Authenticator Authentication server
(RADIUS)

CHEN LAYOUT 11/17/05 11:57 AM Page 54

IEEE Radio Communications • December 2005 S29

supplicant. A Request contains a type field to indicate what
information is being requested. The MD5-challenge is one
example of the type field. The supplicant then replies a
Response for each Request. The Response also contains a type
field according to the type field in the Request. Based on the
specific authentication mechanism, a series of Requests and
Responses will be exchanged. The authenticator then either
sends an authentication Success or Failure to the supplicant.

Next, we present a typical EAP authentication procedure
of WIRE1x in a WLAN environment according to Fig. 4.
1. User opens and selects the device to be authenticated by

pcap_findalldevs(). Supplicant starts to associate with
authenticator. Both supplicant and authenticator will then
transition to the CONNECTING state.

2. Supplicant sends an EAPOL-start frame by
libnet_write_link() to the authenticator in order to initialize
the authentication process.

3. When the authenticator receives EAPOL-Start, it will reply
EAP-Request/Identity to obtain the supplicant’s identity.
When the supplicant captures the EAP frame by pcap_dis-
patch(), the EAP frame is parsed by eap_decode_packet()
and eapol_decode_packet() located in eap.cpp and
eapol.cpp, respectively. Moreover, according to the result
determined by eap_decode_packet() and
eapol_decode_packet(), the supplicant PAE state machine
transits to ACQUIRED state if the request is received suc-
cessfully.

4. The supplicant sends back EAP-Response/Identity, contain-
ing supplicant’s identity, to the authenticator. Subsequently,
the authenticator and authentication server will perform
necessary message exchanges according to the authentica-
tion mechanism. Note that the initial identity exchange is
transmitted in cleartext. Therefore, the identity exchange is
optional in some EAP types. In PEAP, for instance, the
supplicant may put a routing realm instead of its real identi-
ty in the EAP-Response/Identity. The routing realm will
route the EAP messages to the authentication server. The
real identity of the supplicant can be established at a later
phase [6].

5 Let us take MD5 as an example. When the supplicant
receives EAP-Request/Auth, which contains RADIUS-
Access-Challenge, the supplicant PAE state machine tran-
sits to the AUTHENTICATING state. The supplicant
replies an EAP-Response/Auth to the authenticator in
which the RADIUS-Access-Request is encapsulated.

6 Based on the result of the authentication method, the
RADIUS server decides whether or not to authorize the
user. If the user is authorized, the supplicant captures the

EAP-Success and the supplicant PAE state machine transits
to the AUTHENTICATED state. Otherwise, the supplicant
captures the EAP-Failure and transits to the HELD state.

EAP-MD5
MD5 is primarily based on a one-way hash function. Essential-
ly, a hash function is a cryptographic checksum. A one-way
hash function takes an arbitrarily long input message and pro-
duces a fixed-length, pseudorandom output called a hash.
With a hash, it is computationally difficult to find the message
that produced that hash. In addition, it is almost impossible
and difficult to find different messages that will generate the
same hash.

MD5 takes an input message of arbitrary length and pro-
duces an output of a 128-bit fingerprint or message digest.
When using MD5, an authentication server can authenticate a
user without storing the user’s password in cleartext. When an
account is created and a user types in his/her password, the
authentication server stores the hash generated by a one-way
hash function which has the password as the input message.
When the user wants to login to the system later, the suppli-
cant computes the hash with the password the user enters now
as the input of the same one-way hash function. The hash is
transmitted over the network. As mentioned above, even if
one knows the hash, it is computationally difficult to derive
the original password that produced the hash. If the hash
received is same as the one stored in the authentication serv-
er, the user is authenticated. Because the password is not
stored in cleartext, the user password will not be disclosed,
even when the password file is revealed.

The EAP-MD5 is one of the most popular EAP types
because it is easy to use. A user simply types in username. A
Challenge/Response is then followed to authenticate the user.
The authentication server asks for the password by sending
RADIUS-Access-Challenge, as shown in Fig. 4. The password
hash is then sent using EAP-Response/Auth, which is further
encapsulated by RADIUS-Access-Request. This is a simple and
reasonable choice for wired LANs in which there is low risk
for attackers to intercept the transmission. In wireless LANs,
however, attackers can easily sniff a station’s identity and
password hash. Therefore, MD5 is more vulnerable than other
authentication methods. One such attack is replay attack. By
using replay attack, an attacker can pretend to be an autho-
rized user in order to access a network even when the pass-
word is encrypted. For example, an attacker could simply
intercept and replay (i.e., resend) a station’s identity and pass-
word hash to be authenticated.

In WIRE1x, the MD5 algorithm described in IETF RFC
1321 is implemented in md5.h and md5.cpp. We ported the
MD5 algorithm from Open1x and then implemented a graphi-
cal user interface (GUI) for MSWindows. A user only needs
to type in username and password, and then select a proper
network interface to be authenticated.

EAP-TLS
The EAP-TLS (IETF RFC 2716) is based on TLS (IETF
RFC 2246) to provide protected cipher-suite negotiation,
mutual authentication, and key management. After the EAP-
TLS negotiation is completed, the two end-points can securely
communicate within the encrypted TLS tunnel. Therefore,
user’s identity and password will not be revealed. Because
TLS provides a way to use certificates for both user and serv-
er to authenticate each other, a user, in addition to being
authenticated, can also authenticate the network. Therefore,
forged APs could be detected. Both supplicant and authenti-
cation server need to have valid certificates when using EAP-
TLS.

Figure 6 illustrates the authentication process and message
exchanges of EAP-TLS in a WLAN [7]. After the authentica-
tor receives the supplicant’s identity in EAP-Response/Identi-

FIGURE 5. EAP and associated layers.

PPP

EAP over LAN (EAPOL)

Extensible Authentication Protocol (EAP)

TLS

802.3
ethernet

802.5
token
ring

Data link
layer

802.11
wireless

LANs

MD5 TTLS Other Authentication
layer

EAP
layer

CHEN LAYOUT 11/17/05 11:57 AM Page 55

IEEE Radio Communications • December 2005S30

ty (flow 3), it initiates a RADIUS-Access-Request, which also
carries the supplicant’s identity, to the authentication server.
The authentication server then provides its certificate to the
supplicant and requests the supplicant’s certificate. The sup-
plicant validates the server’s certificate and responds an with
EAP-Response which contains the supplicant’s certificate. The
supplicant also initiates the negotiation for cryptographic
material. After the supplicant’s certificate is validated, the
server responds the cryptographic material for the session.
The session keys derived at both ends can be used for data
encryption. Because both the supplicant and authentication
servers need to have valid certificates when using EAP-TLS,
to some extent EAP-TLS is difficult to manage.

In WIRE1x, EAP-TLS is implemented in tls_funcs.h and
tls_funcs.cpp. WIRE1x supports the server certificate in priva-
cy-enhanced electronic mail (PEM) [8] format. The client cer-
tificate can be in either distinguished encoding rules (DER)
[9] format or basic encoding rules (BER) [9] format. The GUI
of EAP-TLS includes a select button which is responsible for
choosing the certificate in the supplicant. We use several func-
tions from Windows’ software development toolkit (SDK) in
mfcDlg.cpp, as described below:
1. CertOpenSystemStore() for opening a system certificate

store
2. CryptUIDlgSelectCertificateFromStore() for selecting a new

certificate when using the GUI
3. CertGetNameString() for finding and printing the name of

the subject of the retrieved certificate
4. CertOpenStore() for opening the certificate store to be

searched
5. CertCloseStore() for closing the system certificate store

To use these functions, the system header files of win-
crypt.h and cryptuiapi.h must be included. Additionally, the
libraries of crypt32.lib, advapi32.lib, and cryptui.lib must be
linked. While we use these functions to obtain the certificate
structure, we must replace SSL_CTX_use_certificate_file() by
SSL_CTX_use_certificate_ASN1() in eapcrypt.cpp in order to
receive the structure provided by Windows SDK functions.

EAP-TTLS
The EAP-TTLS extends EAP-TLS to exchange additional
information between client and server by using the secure tun-
nel established by TLS negotiation. A EAP-TTLS negotiation
comprises two phases: the TLS handshake phase and the TLS
tunnel phase. During phase one, TLS is used for the client to
authenticate the server. Optionally, the server can also
authenticate the client. Similarly as in EAP-TLS, the authenti-

cation is done by using certificates. A secure TLS tunnel is
also established after the phase-one handshake. In phase two,
the secure TLS tunnel can be used for other information
exchanges, such as additional user authentication key, commu-
nication of accounting information, and so forth.

In a WLAN environment, the EAP-TTLS usually is used
as follows. In phase one, TLS is used as a supplicant to
authenticate the authentication server by using a certificate.
Once the authentication server is authenticated, the authenti-
cation server authenticates the supplicant by using the suppli-
cant’s username and password in phase two. The username
and password are carried in the attribute-value pairs (AVPs)
defined by the AAA server, which usually is a RADIUS server
or Diameter server. The message exchanges are protected by
the TLS tunnel established in phase one. The authentication
of supplicant in phase two can use any non-EAP protocols
such as PPP Authentication Protocols (PAP, IETF RFC
1334), PPP Challenge Handshake Authentication Protocol
(CHAP, IETF RFC 1994), Microsoft PPP CHAP Extensions
(MS-CHAP, IETF RFC 2433), or Microsoft PPP CHAP
Extensions, Version 2 (MS-CHAP-V2, IETF RFC 2759).
Because only the authentication server needs to have a valid
certificate, EAP-TTLS is more manageable than EAP-TLS.

The EAP-TTLS in WIRE1x is implemented in tls_funcs.h,
tls_funcs.cpp, ttlsphase2.h, and ttlsphase2.cpp. The GUI consists
of five major input objects. The username and password are used
for phase-two authentication. The user also needs to choose one
of the authentication protocols which can be PAP, CHAP, MS-
CHAP, or MS-CHAP-V2 for phase-two authentication.

PEAP
PEAP provides an encrypted and authenticated tunnel
based on TLS. Therefore, the EAP messages encapsulated
inside the TLS tunnel are protected against various attacks.
Similar to EAP-TTLS, PEAP also comprises two phases. In
the first phase, a TLS session is negotiated and established.
The client also authenticates the server by using a certifi-
cate. Optionally, the server can also authenticate the client.
In the second phase, EAP messages are encrypted by using
the key negotiated in phase one. The basic idea of PEAP
and EAP-TTLS are identical. However, PEAP can only use
EAP protocols (for example, EAP-MS-CHAP-V23 [10]) in
the second phase, while EAP-TTLS can use EAP or non-
EAP protocols (for example, PAP, CHAP, MS-CHAP, and
MS-CHAP-V2).

When using PEAP in WLANs, typically, an authentication
server is authenticated by a supplicant based on the server
certificate. A secure TLS tunnel is also created. A supplicant
is then authenticated using username and password, which are
protected by the TLS tunnel.

The PEAP in WIRE1x is implemented in tls_funcs.h,
tls_funcs.cpp, eapmschapv2.h, eapmschapv2.cpp, peap-
phase2.h, and peapphase2.cpp. The GUI of PEAP consists of
three major input objects. A user must type in username and
password for phase-two authentication. Currently, only EAP-
MS-CHAP-V2 is supported. A user also needs to select a
proper network interface to be authenticated.

To conclude this section, a comparison of the authentica-
tion mechanisms discussed in this section is provided in
Table 1.

Open-Source Libraries
This section describes the open-source libraries used in
WIRE1x. WinPcap and Libnet are used to capture/write pack-
ets from/to data link layer. OpenSSL is used for TLS-based
authentication methods.

FIGURE 6. Message flow of EAP-TLS.

EAPOL-start

RADIUS-access-request

RADIUS-access-success

(Pass session key to AP)

EAP-request/identity

EAP-response/identity

EAP-success

Client derives
session key

Supplicant Authenticator Authentication server
(RADIUS)

Server derives
session key

Server-side TLS

Client-side TLS

3 EAP-MS-CHAP-V2 encapsulates the MS-CHAP-V2 within EAP.

CHEN LAYOUT 11/17/05 11:57 AM Page 56

IEEE Radio Communications • December 2005 S31

WinPcap

WinPcap is used for packet capturing and network analysis
in the Win32 platform. It includes a kernel-level packet fil-
ter, a low-level dynamic link library (packet.dll), and a high-
level and system-independent library (wpcap.dll, which is
based on libpcap version 0.6.2). It is in charge of the follow-
ing tasks:
1. The pcap_findalldevs() in wire1xDlg.cpp prints the list of

network interfaces. Therefore, a user can select a proper
network interface to be authenticated.

2. The pcap_dispatch() in os_generic.cpp captures packets
from the AP.

3. The setup pcap() in os_generic.cpp can be used to adjust
parameters in filter, which can make the supplicant receive
EAP frames only.

4. The pcap_close() in os_generic.cpp shuts down WinPcap.
5. The pcap_open_live() in os_generic.cpp selects promiscuous

mode or nonpromiscuous mode for the network interface.

Libnet
Libnet is a generic networking API that provides access to
several protocols. In WIRE1x, it is used only for libnet_
write_link() in os_generic.cpp to write packets to AP.

OpenSSL
OpenSSL is an open-source toolkit which implements the
Secure Sockets Layer (SSL) v2/v3 and TLS v1 protocols. It
also includes a full-strength general-purpose cryptography
library. The TLS-based authentication methods in WIRE1x
use OpenSSL library in eapcrypt.cpp. There are many
OpenSSL functions in eapcrypt.cpp. Here, we only itemize
some of them:
1. The SSL_CTX_load_verify_locations() loads the server cer-

tificate in PEM format. As discussed above, all TLS-based
authentication methods need a server certificate in order to
authenticate the server.

2. The SSL_CTX_use_certificate_file() loads the client certifi-
cate in DER format. Alternatively, the SSL CTX use cer-
tificate ASN1() loads the client certificate in BER format.

3. The SSL_CTX_use_PrivateKey_file() loads the client pri-
vate key in PEM format. This function is used by EAP-TLS
only.

Summary
Supplicant software is indispensable to the IEEE 802.1x stan-
dard. We observe that the success of 802.1x greatly depends
on end users. We believe that a free 802.1x supplicant soft-
ware, which works with various versions of MS Windows and
supports most of authentication mechanisms in EAP, will
boost the deployment of 802.1x, and thus 802.11i. Therefore,
we have developed WIRE1x and hope that most users will
access WLANs in a more secure manner.

We believe that WIRE1x is a good choice for people
eager for 802.1x client software. It has been downloaded
worldwide. Since WIRE1x was released on June 18, 2003,
the WIRE1x website has been visited more than 24,000
times. There have been more than 3600 downloads of
source code and 6800 downloads of executable code up
until August 2005.

This article has presented all the components of WIRE1x
exhaustively. In addition to providing a tutorial of 802.1x and
EAP, the objective of this article is to share our experience in
implementing the 802.1x supplicant. Currently, WIRE1x sup-
ports several wireless cards and provides various authentica-
tion mechanisms, including EAP-MD5, EAP-TLS,
EAP-TTLS, and PEAP. It is versatile, as compared to many
other implementations of the 802.1x supplicant. We believe
open source is essential for any security-related software
because it can be examined as one wishes. Based on this arti-
cle, readers should be able to comprehend the source code of
WIRE1x easily.

Acknowledgments
We thank other members of the Wireless Internet Research
& Engineering (WIRE) Lab, especially Yi-Wen Liu, Chin-
Hsing Lin, Wen-Ting Wu, and Jui-Hung Yeh, for their help in
the development of WIRE1x. We also thank the Computer
and Communication Center, National Tsing Hua University,
and the Computer Center, Department of Computer Science,
National Tsing Hua University, for their support. This work
was sponsored in part by National Science Council (NSC)
under grant nos. 94-2752- E-007-003-PAE, 94-2213-E-007-073,
93-2219-E-007-002, and 93-2213-E-007-004, and Industrial
Technology Research Institute (ITRI) under contract no. T1-
94081-13.

TABLE 1. Comparison of authentication mechanisms.

EAP-MD5 (RFC 1321) EAP-TLS (RFC 2716) EAP-TTLS (Internet draft) PEAP (Internet draft)

Server authentication No Public key (certificate) Public key (certificate) Public key (certificate)

Supplicant authentica-
tion Password hash Public key (certificate or

smart card)
Certificate, EAP, or non-
EAP protocols

Certificate or EAP proto-
cols

Mutual authentication No Yes Yes Yes

Dynamic key delivery No Yes Yes Yes

Basic protocol
architecture Challenge/response

Establish TLS session and
validate certificates for
both client and server

1. Establish TLS between
client and TTLS server
2. Exchange attribute-
value pairs between client
and server

1. Establish TLS
between client and
PEAP server
2. Run EAP exchanges
over TLS tunnel

Server certificate No Required Required Required

Client certificate No Required Optional Optional

Protection of user
identity No No Yes, protected by TLS Yes, protected by TLS

CHEN LAYOUT 11/17/05 11:57 AM Page 57

IEEE Radio Communications • December 2005S32

References
[1] ANSI/IEEE Std 802.11, “Wireless LAN Medium Access Control (MAC) and

Physical Layer (PHY) specifications,” 1999.
[2] IEEE Std 802.11i, “Part 11: Wireless LAN Medium Access Control (MAC)

and Physical Layer (PHY) specifications, Amendment 6: Medium Access
Control (MAC) Security Enhancements,” July 2004.

[3] J.-C. Chen, M.-C. Jiang, and Y.-W. Liu, “Wireless LAN Security and IEEE
802.11i,” IEEE Wireless Commun., vol. 12, 2005, pp. 27–36.

[4] IEEE Std 802.1X-2001, “IEEE Standard for Local and Metropolitan Area
Networks, Port-based Network Access Control,” Oct. 2001.

[5] P. Funk and S. Blake-Wilson, “EAP Tunneled TLS Authentication Protocol
Version 1 (EAP-TTLSv1),” IETF Internet Draft (work in progress), Feb.
2005, available at draft-funk-eap-ttls-v1-00.txt

[6] A. Palekar et al., “Protected EAP Protocol (PEAP), Version 2,” IETF Inter-
net Draft (work in progress), Oct. 2004, available at draft-josefsson-
pppext-eap-tls-eap-10.txt

[7] Cisco Systems, “White paper: EAP-TLS Deployment Guide for Wireless
LAN Networks,” 2004, available at http://www.cisco.com/

[8] B. Kaliski, “Privacy Enhancement for Internet Electronic Mail: Part IV: Key
Certification and Related Services,” IETF RFC 1424, Feb. 1993.

[9] ITU-T Rec. X.690, “ASN.1 Encoding Rules: Specification of Basic Encod-

ing Rules (BER), Canonical Encoding Rules (CER) and Distinguished
Encoding Rules (DER),” July 2002.

[10] V. Kamath and A. Palekar, “Microsoft EAP CHAP Extensions,” IETF
Internet Draft (work in progress), Apr. 2004, available at draft-kamath-
pppext-eap-mschapv2-01.txt

Biographies
JYH-CHENG CHEN [SM] (jcchen@cs.nthu.edu.tw) is an associate professor in
the Department of Computer Science and the Institute of Communications
Engineering, National Tsing Hua University, Hsinchu, Taiwan. Prior to join-
ing National Tsing Hua University as an assistant professor, he was a
research scientist at Bellcore/Telcordia Technologies, Morristown, New Jer-
sey, from August 1998 to August 2001. He received his Ph.D. degree from
the State University of New York at Buffalo in 1998. He is a coauthor of
the book IP-Based Next-Generation Wireless Networks (Wiley, 2004).

YU-PING WANG (ichiro@wire.cs.nthu.edu.tw) received his B.B.A. degree in
information management from Shih Hsin University, Taipei, Taiwan, in
2002, and his M.S. degree in communications engineering from National
Tsing Hua University in 2004. He is now with CyberTAN Technology,
Hsinchu, Taiwan.

IEEE COMMUNICATIONS MAGAZINE
ADVANCES IN SERVICE PLATFORM TECHNOLOGIES FOR NEXT GENERATION MOBILE SYSTEMS

CALL FOR PAPERS
Background
Mobile communications has evolved to an integral component in our everyday life providing a growing variety of services. Tradition-
al cellular technologies have been enhanced by Internet technologies in order to repeat the enormous success of the Internet also
for mobile environments. In addition, the trend of ubiquitous computing introduces large-scale interaction with the environment
based on sensors and actuators. Industry is pushing new standards that allow high data rate mobile multimedia applications as well
as seamless communication across heterogeneous access and networking technologies. In such a diverse world, the success of the
next generation mobile communication systems will depend on services and applications that will be provided. Future service plat-
forms are expected to integrate those different paradigms providing open interfaces to service and application providers taking new
software technologies into account. New paradigms are emerging that need to be supported. For example, the customer acceptance
is considered to be widely increased by tailoring services and applications to actual user needs, their preferences and the context a
user is in. Another example is peer-to-peer services, where (mobile) users directly interact with each other without central control. A
well engineered next generation service platform should provide all means to allow innovative services to be created, deployed, and
managed addressing customer and provider needs. For example, third party interfaces will allow chaining of expertise in service pro-
visioning. In addition, semantic technologies may help to structure contextual knowledge about the user’s environment.

Scope of Contributions
The papers of this feature topic will focus on advanced concepts for next generation mobile service platforms. We solicit papers cov-
ering a variety of topics that include, but are not limited to the following aspects:
•Open service architectures (open interfaces, transition of OSA/Parlay/IMS towards B3G/4G)
•Advanced IP-based service signaling architectures and protocols (including session mobility)
•Concepts and realization of emerging features for B3G/4G mobile service platforms (context awareness, personalization, agents,

service adaptation)
•Decentralized, self-organized service platforms (e.g., peer-to-peer systems)
•Ubiquitous service platforms (smart cards, sensor networks) and their integration with mobile systems’ service platforms

(service gateways)
•Service discovery and service composition, including the application of semantic information

Papers should be of tutorial in nature and authors must follow the IEEE Communications Magazine guidelines for preparation of the
manuscript. For further detail please refer to “Information for Authors” on the IEEE Communications Magazine web site at
http://www.comsoc.org/pubs/commag/sub_guidelines.html

Manuscripts should be submitted through Manuscript Central at http://commag-ieee.manuscriptcentral.com/ by December 31, 2005.
Please select “September 2006/Advances in Service Platform Technologies for Next Generation Mobile Systems” in the drop down
menu.

Publication Schedule
Manuscript submission: December 31, 2005
Notification of acceptance: April 1, 2006
Final manuscripts due: June 15, 2006
Publication date: September 2006

Guest Editors
Wolfgang Kellerer Stefan Arbanowski
DoCoMo Communications Laboratories Europe Fraunhofer FOKUS
kellerer@docomolab-euro.com arbanowski@fokus.fraunhofer.de

CHEN LAYOUT 11/17/05 11:57 AM Page 58

